CHAPTER 11

Establishing & Equipping an Amateur Radio Station

(Nothing to do with bancruptcy)

Doug Elliott VA3DAE

Overview

- What gear do I need for Ham Radio?
- How do I connect it up?
- How does it work?

2

How do I Get Started?

- Think about what part of Ham Radio you want to explore first, and try it out at Club station or friends shack
- Find an experienced ham (Elmer) who can advise you, especially on expensive or used equipment
- · Make a rough budget
- Find a corner of your home for your shack

Where can I get gear?

1) Dealer\$

- only source of new stuff with warranty
- can provide service / repairs
- can supply accessories you need
- Buying Canadian minimizes shipping

Where can I get gear?

2) Other Amateurs

- Ham Fests / swap shops / web ads
- best if you know seller, else risky
- ask for a demo, test the gear if you can
- ask an Elmer for advice
- be careful shipping across a border

Where do I set it up - Shack?

- · everything from a shelf to a building
- · Basic Needs:
 - a 120 V power outlet, ideally dedicated
 - a pathway to antenna for feedlines
 - a safe place to mount antenna(s)
 - a proper station ground
 - optional: Computer, phone, storage

VHF and UHF Stations

- · A frequent starting point, low cost
 - Transceiver (maybe a mobile)
 - Power Supply to generate 12V
 - Microphone
 - Feedline cable
 - Antenna

Adjustments to Make

- · Microphone deviation, gain
- · variable power supply output
- · adequate ventilation
- programming memories with repeater frequencies, offsets, PL tones, meaningful names

8

All in One VHF/UHF Station

- Handheld Transceiver / Handytalky
 - portable, of course
 - VHF and/or UHF and/or 220
 - menus and tiny buttons
 - speaker mics, spare batteries, chargers

VHF / UHF in your Vehicle

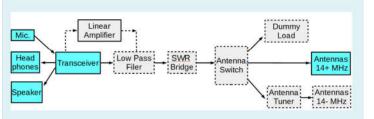
- Need to be careful with installation:
 - fuses in both sides of cable to battery
 - suitable power wire gauge
 - adequate ventilation
 - antenna mounting and cabling
 - the joy of passing through firewalls

10

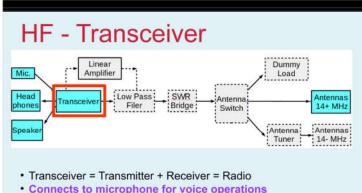
Fancy Features

- Voice Operated Transmit (VOX)
- Cross Band Repeat
- APRS Support
- Monitoring Multiple bands, frequencies

Distracted Driving

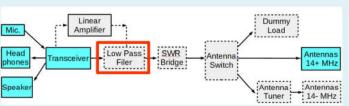

- Exemption for licensed hams using permanently mounted radios
- keep a copy of your license, and the laws in your glove compartment
- Don't assume officers are current
- · Don't flaunt radio use

The HF World

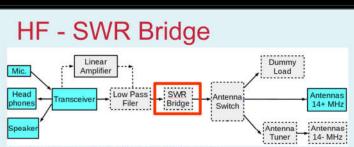

- The exciting international contacts
- Shack: more, bigger equipment
- Antenna: bigger, outside or attic
- more complicated cabling
- more potential for interference

The Basic HF Station Mic. Head Transceive Antenna phones Feedline Speake (Plus power and grounding cables)

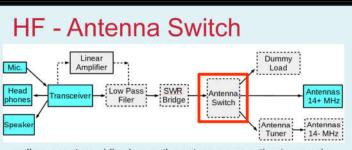
HF with the optional extras



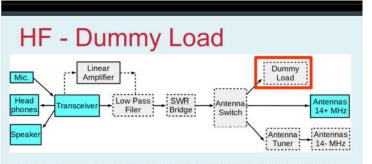
Don't panic! We'll explain each one...



- · uses a single antenna connection for both send and receive
- · connects to 12 13.8 Volt DC power
- · has a built in speaker, not always high quality


HF - Low Pass Filter

- · removes unintended frequencies that could cause interference
- · reduces the effects of harmonic radiation
- · lets low frequencies pass, blocks higher frequencies
- · modern rigs usually have good built- in filtering
- · best located close to transceiver or linear amplifier



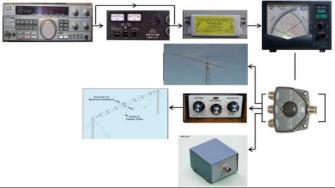
- · Also known as SWR Meter, VSWR meter
- · SWR = Standing Wave Ratio, a measure of power reflection
- · Many SWR meters can also measure power out and reflected
- · need different SWR meters for HF and VHF/UHF
- useful for determining the effectiveness of the antenna system
- · modern rigs have SWR metering built in
- · modern rigs will reduce power if SWR gets too high

- · allows you to rapidly change the antenna connection to your rig
- lets you quickly use a dummy load for tuning / testing
- · lets you connect via tuner to an antenna, or straight to antenna
- · lets you effectively disconnect to avoid lightning damage
- · remote controlled antenna switches are available, but expensive
- · is component that feeds antenna, tuner and dummy load

HF - Antenna Tuner Dummy Linear Amplifier Mic. Load Head phones Low Pass Transceive Antennas 14+ MHz Filer Bridge Switch Antennas Antenna Tuner Speake 14- MHz · AKA Antenna Tuning Unit ATU, antenna coupler, antenna matching unit, transmatch, matchbox, antenna coupler, tuner matches transceiver impedance to that of your antenna · tuners are built into many modern rigs · highly desirable for HF, especially below 14 MHz · can allow you to use an antenna on a band it wasn't designed for

- a "pretend" test antenna that has exactly 50 Ohms impedance
- is connected temporarily for the tuning process
- · essentially a big 50 Ohm resistor with heavy heat sinking
- may get warm changing RF energy into heat
- · does not transmit, or interfere with other transmissions
- · has a power rating that you shouldn't exceed

21


- · You learned about Antennas in chapter 8
- · A good radio won't perform well with a poor antenna
- · You can build your own antennas, and upgrade over time.
- · Use the best quality feedline you can to minimize losses
- · Using tuner below 14 MHz helps with deep valley SWR curves

2

Placement of Components in a Station

Placement of Components in an HF Station

Towers

- · allow high antennas that rotate
- not just HF, not a necessity
- · need carefully planning
- federal and municipal laws apply
- · safety critical for tower work
- more on towers in chapter 16

Voice Operated Transmit (VOX)

- "hands-free" radio, but tricky
- PTT controlled by voice & timer
- VOX transmits when you speak into mic
- Background noise also pushes PTT
- · use with caution

2/

Solid State Finals

- modern rigs need little adjustment:
 - •mic gain, speech processor, RF power
- · don't overdo speech processing
- ALC = Automatic Level Control (AGC)
- use dummy load as much as possible

Speech Processing

- · also known as compression
- = signal processing to improve signal inteligibility at the receiver
- · gives your signal more punch
- does NOT change the PEP peak envelope power
- · too much causes distortion / splatter don't overdo it

20

Tube Finals

- AKA shack heaters, rare today
- need tuning before every session
- tubes are tolerant of mis-tuning
- varies by rig check your manual

Using Antenna Tuners

- · AKA transmatch, matchbox, antenna coupler
- · built in to many modern rigs
- · level of automation varies
- modern ones are microprocessor controller, and are noisy as relays switch components in and out
- "Is this frequency in use?" before tuning
- modern rigs reduce power on high SWR

29

Monitoring Performance

- you may have SWR bridge / power meter in your config
- · modern rigs have multiple readouts
- things to watch:
 - •SWR, Power, Signal Levels (S9..)

Frequency Calibration

- generally unneeded with newer rigs
- need accuracy to comply with regulations related to Ham bands
- measured using a frequency counter

32

Operating CW

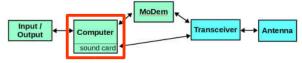
- CW = Continuous Wave > Morse Code
- · device in your hand is a key or bug
 - straight, semi-automatic, iambic
- "Keyer" electronically forms good Morse Code
 - · built in to many modern rigs
- · Computer software to learn CW

- nothing specific to ham radio

• Practice, practice, practice! shortform city!

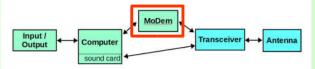
Operating Digital Modes

Input / Computer Computer Transceiver Antenna


Computer to computer communications, like:

Packet Radio, AMTOR, RTTY, PSK31, JT65, WSPR, FT8

33


Digital Modes - Input / Output Input / Output Transceiver Antenna - How information gets into and out of the computer - keyboard, monitor, printer - input / output is controlled by the computer

Digital Modes - Computer

- PC / Laptop / MAC, etc
- -in the olden days, an external MoDem was used to produce sounds fed to radio and listen to it
- these days, the computers sound card does this, and communicates directly with the radio
- software is usually free on Internet, from hams
- high quality external sound cards are sometimes used

Digital Modes - MoDem

- Obsolete
- stands for Modulator / Demodulator
- sits between computer and transceiver
- converts computer info into sounds for radio
- today this is done using the computer's sound card
- Used to need a Terminal Node Controller (TNC)
 between computer and modem even more obsolete

Digital Modes - Transceiver and Antenna

Input / Output Computer Sound card

- Same gear as for voice over radio
- generally use low power for digital modes
- some radios have extra features to support digital modes

38

"Transducers"

- fancy engineering word for microphones and loudspeakers
- transducers convert between forms of energy
- for us, between sound energy and electrical energy

Microphone Characteristics

- ideal frequency response:
 20 Hz 20 kHz = human hearing
- sensitivity: how much voltage is produced by a small sound
- directional qualities variable sensitivity
- impedance: matching is efficient

39

Microphone Types - Crystal

- electricity is formed if crystal is deformed, AKA piezoelectric effect
- · diaphram linked mechanically to crystal
- respond up to 10 kHz
- · rare now, compared to past

Microphone Types - Dynamic

- electricity generated by moving a conductor through magnetic field
- coil on diaphram moves within a magnetic field, generating signal
- respond up to 10 kHz

Microphone Types - Condenser

- AKA electrostatic or capacitor
- diaphram is one side of an air dialectric capacitor
- as diaphram moves, capacitance changes
- · "electret" microphone is similar

Microphone Types - Carbon

- diaphram causes compression of carbon granules, changing their resistance
- · very sensitive, but generate noise
- respond up to 4 kH
- used in old phones, but not today

...

Loudspeakers

- applies to speakers, headphones and ear pieces
- usually an inverted dynamic microphone, using electrical signal to move coil on diaphram
- sometimes, a loudspeaker can be used as a dynamic microphone

Loudspeaker Characteristics

- frequency response: stable over whole audio spectrum
- impedance: matching connected gear maximizes power transfer
- Power rating: exceeding the designed power rating will likely cause damage

712

Loudspeaker Realities

- making radios smaller means the built in speaker can't perform as well.
- plugging in an external speaker or headphones will give better sound
- · don't forget to match impedance

Headphones

- · useful on all radios
- your radio's output doesn't bother others
- · background noise doesn't bother you
- you can concentrate better, especially on weak signals
- hands-free via a boom mic and foot pedal or VOX, so you can log / type on a computer.

Orphan Exam Questions

B-003-14-8 (1) When switching from receive to transmit:

- 1. the receiver should be muted
- 2. the transmit oscillator should be turned off
- 3. the receiving antenna should be connected
- 4. the power supply should be off

B-003-14-9 (2) A switching system to enable the use of one antenna for a transmitter and receiver should also:

- 1. ground the antenna on receive
- 2. disable the unit not being used
- 3. switch between meters
- 4. disconnect the antenna tuner

40

The End

Questions?

Class Evaluation Forms

51

Orphan Exam Questions

B-003-14-10 (1) An antenna changeover switch in a transmitter-receiver combination is necessary:

- 1. so that one antenna can be used for transmitter and receiver
- 2. to change antennas for operation on other frequencies
- 3. to prevent RF currents entering the receiver circuits
- 4. to allow more than one transmitter to be used